PHYSICAL CHEMISTRY

Total Marks : 52
Max. Time : 62 min.

Topic : Mole Concept

lints a Solutions

DPP No. \# 11

1. Mass of a neutron $=1.675 \times 10^{-24} \mathrm{~g}$ mass of a proton $=1.672 \times 10^{-24}$
2. Carbon is ${ }_{6} \mathrm{C}^{12}$ and silicon is ${ }_{14} \mathrm{~S}^{28}$.
3. No change by doubling mass of electrons, however by reducing mass of neutron to half total atomic mass becomes $6+3$ instead of $6+6$. Thus reduced by 25%.
4. $z X^{A}, A=N+P$
5. $\mathrm{NO}_{3}^{-}=7+8 \times 3+1=32$
6. fraction $=\frac{\text { vol.of nucleus }}{\text { vol. of atom }}=\frac{\frac{4}{3} \pi\left(10^{-13}\right)^{3}}{\frac{4}{3} \pi\left(10^{-8}\right)^{3}}=10^{-15}$.
8._ $\quad 2(p+n)+3 p=140 \quad \therefore 7 \mathrm{x}=140 \quad \therefore \mathrm{x}=20$
$\therefore \quad \mathrm{p}=\mathrm{e}=\mathrm{n}=20 \quad \therefore$ Total number of nucleons $=\mathrm{n}+\mathrm{p}=40$
$\therefore \quad$ Element $=$ Calcium

DPP No. \# 12

1. $P E=-\frac{K Z e^{2}}{r}$.
2.* Isotopes have same atomic number but different mass number.
2. Isobars have same mass number.
4.* Isotones have same number of neutrons.
3. Each has 10 electrons.

In $\mathrm{CH}_{3}^{+}=6+3-1=8 \mathrm{e}$
In $\mathrm{H}_{3} \mathrm{O}^{+}=3+8-1=10 \mathrm{e}$
6.* Isoelectronic specis have same number of electrons.
7. $\frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}$
$\Rightarrow \quad \frac{1}{2}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}$
$\Rightarrow \quad \frac{A_{1}}{A_{2}}=\frac{1}{8}$
ratio of atomic mass number.
8. $r_{0}=\frac{4 K Z e^{2}}{M_{0} v_{0}^{2}}$

$$
\begin{array}{ll}
\Rightarrow & 2 r_{0}=\frac{4 \mathrm{KZe}^{2}}{\mathrm{M}_{0} \mathrm{v}^{\prime 2}} \\
\Rightarrow & \mathrm{r}_{0} \mathrm{v}_{0}^{2}=2 \mathrm{r}_{0} \mathrm{v}^{\prime 2} \\
\Rightarrow & \mathrm{v}^{\prime}=\frac{\mathrm{v}_{0}}{\sqrt{2}}
\end{array}
$$

9. Given $\mathrm{R}=\frac{4 K Z e^{2}}{\mathrm{M}_{0} \mathrm{v}_{0}^{2}}$

$$
\begin{aligned}
& \therefore \quad R^{\prime}=\frac{4 K Z e^{2}}{M_{0}\left(\frac{v_{0}}{2}\right)^{2}}=4 R \\
& \therefore \quad \% \text { error }=\frac{4 R-R}{R} \times 100=300 \% .
\end{aligned}
$$

10. Use $R=\frac{4 K z e^{2}}{m_{\alpha} v_{\alpha}{ }^{2}}$.
11. Definition
12. In one second, wave can travel distance $=v \times \lambda=10 \times 2.5 \mathrm{~m}=25 \mathrm{~m}$ In 40 seconds, it will travel $=25 \times 40 \mathrm{~m}=\mathbf{1 0 0 0} \mathbf{~ m}$.

DPP No. \# 13

1. Maximum wave length will correspond to minimum frequency as $\lambda \propto \frac{1}{v}$, and that is given for red light in the spectrum.

$$
\begin{array}{ll}
& \lambda_{\text {max. }}=\frac{\mathrm{C}}{v_{\text {min. }}}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4 \times 10^{14} \mathrm{~m}}=750 \times 10^{-9} \mathrm{~m} . \\
\Rightarrow \quad & 7500 \AA .
\end{array}
$$

2. $\lambda=\frac{C}{v}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1200 \times 10^{3} \mathrm{~s}^{-1}}=250 \mathrm{~m}=0.25 \mathrm{~km}$.
$\bar{v}=$ Wave no. $=\frac{1}{\lambda}=\frac{1 \mathrm{~km}}{0.25 \mathrm{~km}}=4$ wave per km .
3.

$$
\begin{array}{llll}
\text { (a) } & \mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3} & \therefore & \frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \mathrm{R}_{0}{ }^{3} \mathrm{~A} \\
\therefore & \mathrm{~V} \propto \mathrm{~A} & \therefore & \mathrm{n}=1 \\
\text { (b) } & \overline{\mathrm{v}}=\frac{v}{\mathrm{c}}=\frac{7.5 \times 10^{14}}{3 \times 10^{8}}=2.5 \times 10^{6} \mathrm{~m}^{-1}
\end{array}
$$

4. $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{6000}{3000}=2$.
5. Use $E=\frac{n h c}{\lambda}, \quad$ Here n is number of protons.
6. Photon absorb $=\frac{\mathrm{hc}}{300 \times 10^{-9}}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}}=6.6 \times 10^{-19}$ Joule

One re-emitted photon energy $=\frac{h c}{500 \times 10^{-9}}=3.96 \times 10^{-19}$ Joule
other photon have energy $=6.6 \times 10^{-19}-3.93 \times 10^{-19}=2.65 \times 10^{-19}$ Joule .
7. Use $E=\frac{n h c}{\lambda}$
$60 \times 60=\frac{\mathrm{n} \times 6.64 \times 10^{-34} \times 3 \times 10^{8}}{620 \times 10^{-9}}$
$\mathrm{n}=1.125 \times 10^{22}$
8. Energy of one photon $=\frac{12400}{6200}=2 \mathrm{eV}=2 \times 96=192 \mathrm{KJ} \mathrm{mol}^{-1}$
$\therefore \%$ of energy of photon converted to K.E. of A atoms $=\frac{192-144}{192} \times 100=\frac{48}{192} \times 100=25 \%$
9. $\quad \mathrm{E}_{\text {emitted }}=\frac{50}{100} \times \mathrm{E}_{\text {absorbed }}$

No. of emitted photons \times Energy of emitted photon $=\frac{50}{100} \times$ No. of absorbed photon \times Energy of absorbed photon.

$$
\begin{aligned}
\therefore \quad & 5 x \times \frac{12400}{5000}=\frac{50}{100} \times 8 x \times \frac{12400}{\lambda(\AA)} . \\
& \lambda(\AA)=4000 \AA
\end{aligned}
$$

DPP No. \# 14

1. For I experiment,

For II experiment, here,
\therefore

$$
\begin{align*}
& h v_{1}=W+K E_{\max 1} \tag{1}\\
& h v_{2}=W+K E_{\max } \tag{2}\\
& v_{2}=2 v_{1} \text { and } K E_{\text {max2 }}= \\
& 2 h v_{1}=W+3 K E_{\max 1}= \tag{3}
\end{align*}
$$

From (1) and (3): $\quad h v_{1}=2 K E_{\max 1} \quad$ or $\quad h\left(\frac{v_{2}}{2}\right)=2\left(\frac{K E_{\max 2}}{3}\right)$
$\therefore \%$ of incident energy converted into max KE in II experiment

$$
=\frac{\mathrm{KE}_{\max 2}}{\mathrm{~h} v_{2}} \times 100=\frac{3}{4} \times 100=75 \%
$$

2. The maximum KE of potoelectron is corresponding to maximum stopping $=18.6 \mathrm{eV}$

$$
\begin{aligned}
\therefore \quad & E_{\text {incident }}=W+K E_{\max } \\
& \frac{12400}{400} \mathrm{eV}=\mathrm{W}+18.6 \mathrm{eV} \\
& W=12.4 \mathrm{eV}
\end{aligned}
$$

$\therefore \quad \lambda_{0}=\frac{12400}{12.4} \AA=1000 \AA$
3. Only for Single electron species.
4. $\quad \frac{1}{\lambda_{1}}=\mathrm{RZ}^{2}\left[\frac{1}{\mathrm{n}_{\mathrm{C}}}-\frac{1}{\mathrm{n}_{\mathrm{A}}}\right]$
$\frac{1}{\lambda_{1}}=R^{2}\left[\frac{1}{n_{C}}-\frac{1}{n_{B}}\right]$
$\frac{1}{\lambda_{3}}=\mathrm{RZ}^{2}\left[\frac{1}{n_{B}}-\frac{1}{n_{A}}\right]$
$\frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}=\frac{1}{3000}$
$\lambda_{3}=3000 \AA$.
5. For $r=0.52 \AA \times \frac{12}{1}$

For $\quad L^{2+} r_{1}=0.529 \times \frac{12}{3}$

$$
\frac{r}{r_{1}}=3 \quad \Rightarrow \quad r_{1}=\frac{r}{3}
$$

6. $\quad r_{4}-r_{3}=7 \times r_{1}$
7. Use $V_{n}=2.185 \times 10^{8}\left(\frac{z}{n}\right) \mathrm{cm} / \mathrm{sec}$.
8. $P E=-\frac{K Z e^{2}}{r}$.
9. $\frac{n h}{2 \pi}=\frac{2 h}{\pi} \quad \Rightarrow n=4$,
P.E. $=2$ (T.E.) $=2\left(-13.6 \times \frac{2^{2}}{4^{2}}\right)=-6.8 \mathrm{eV}$.
10. (A) $E_{n}^{-y} \propto r_{n} / Z$

$$
\begin{aligned}
& \left(\frac{z^{2}}{n^{2}} \times 13.6 \mathrm{eV}\right)^{-y} \propto \frac{1}{z}\left(\frac{n^{2}}{z} \times 0.529 \AA\right) \\
& y=1
\end{aligned}
$$

(B) $\ell_{n} \propto n^{x} \Rightarrow \frac{n h}{2 \pi} \propto n^{x} \Rightarrow \quad x=1$
(C) Potential energy $=2$ (total energy)
(D) $T_{n} \propto \frac{n^{3}}{z^{2}} \Rightarrow t=-2 \quad \Rightarrow \quad m=-3$.

DPP No. \# 15

1. $\quad \mathrm{E}_{\text {IPhoton }}+\mathrm{E}_{\| \text {Photon }}=\mathrm{E}_{\text {single Photon }}$
hc $\bar{v}_{1}+h c \bar{v}_{2}=\frac{h c}{\lambda}$
$\therefore \lambda=\frac{1}{\bar{v}_{1}+\bar{v}_{2}}=\frac{1}{5.25 \times 10^{8}+7.25 \times 10^{8}}=\frac{1}{12.5 \times 10^{8}}=8 \times 10^{-10} \mathrm{~m}=8 \AA$
2. Use : $\mathrm{E}_{1}-\mathrm{E}_{2} / \mathrm{E}_{2}-\mathrm{E}_{3}$
3. $\frac{r_{1}}{r_{2}}=\frac{1}{4} \quad \Rightarrow \quad \frac{r_{3}}{r_{4}}=\frac{9}{16} \quad \Rightarrow \quad \frac{r_{2}}{r_{4}}=\frac{1}{4}$

So corresponding energy of ratio $\frac{1}{4}$ is $E_{2}-E_{1}$ and $E_{4}-E_{2}$.
4. $\frac{R_{1}}{R_{2}}=\frac{4}{9}=\frac{n_{1}^{2}}{n_{2}^{2}}$, hence $\frac{n_{1}}{n_{2}}=\frac{2}{3}$. So, $\frac{f_{1}}{f_{2}}=\frac{n_{2}^{3}}{n_{1}^{3}}=\frac{27}{8}$.
5. Electrostatic force of attraction $F \propto \frac{Z^{3}}{n^{4}}$
$\therefore \frac{\left(\mathrm{F}_{\mathrm{n}=3}\right)_{\mathrm{He}^{+}}}{\left(\mathrm{F}_{\mathrm{n}=2}\right)_{\mathrm{Li}^{2+}}}=\frac{2^{3} / 3^{4}}{3^{3} / 2^{4}}=\left(\frac{2}{3}\right)^{7}=\left(\frac{3}{2}\right)^{-7} \quad \therefore \mathrm{x}=-7 \quad \mathrm{~F}=\frac{\mathrm{KZ} \mathrm{e}^{2}}{\mathrm{R}^{2}}$
6. Order of energy \rightarrow Violet $>$ Blue $>$ yellow $>$ red

Order of energy $\rightarrow E_{2 \rightarrow 1}>E_{5 \rightarrow 2}>E_{6 \rightarrow 3}>E_{4 \rightarrow 3}$
\therefore Violet $(2 \rightarrow 1)$, Blue $(5 \rightarrow 2)$, yellow $(6 \rightarrow 3)$, Red $(4 \rightarrow 3)$
7.* $\quad B E$ for $(\mathrm{n}=3)=1.51 \mathrm{Z}^{2}=12 \mathrm{eV}$ (given)
$\therefore Z^{2}=12 / 1.51$
I Excitation potential $=10.2 Z^{2}=10.2 \times(12 / 1.51)=81 V$
II Excitation potential $=12.09 \mathrm{Z}^{2}=12.09 \times(12 / 1.51)=96 \mathrm{eV}$
Ionisation potential $=13.6 Z^{2}=13.6(12 / 1.51)=108 \mathrm{~V}$
$B E$ of $(n=2)=3.4 Z^{2}=3.4 \times(12 / 1.51)=27 \mathrm{eV}$
8. Let the given transition for both the species is $n_{1} \rightarrow n_{2}$

Then $\quad \mathrm{X}_{\mathrm{cm}}{ }^{-1}=\mathrm{R} \times \mathrm{2}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$ For He^{+}
and (wave no.) $\mathrm{Be}^{3+}=\mathrm{R} \times 4^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$ For Be^{3+}
From eq. (i) and (ii) (wave no.) $\mathrm{Be}^{3+}=4 \mathrm{xcm}^{-1}$.

DPP No. \# 16

1. $\lambda=\frac{h}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\mathrm{v}^{2}}$
but $v^{2}=\frac{2 K E}{m} \quad$ therefore $\lambda=\frac{\mathrm{hm}}{2 \mathrm{KE}}$
2. Use $C=v \lambda$

$$
\Rightarrow \quad \bar{u}=\frac{1}{\lambda}
$$

3. $K . E_{\text {proton }}=1+(1)(3)=4 \mathrm{eV} \therefore \lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}}(\mathrm{KE})_{\mathrm{p}}}} \& \mathrm{KE}_{\alpha \text {-particle }}=20-(2)(2)=16 \mathrm{eV} \therefore \lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha}(\mathrm{KE})_{\alpha}}}$
$\therefore \frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha}(\mathrm{KE})_{\alpha}}{\mathrm{m}_{\mathrm{p}}(\mathrm{KE})_{p}}}=\sqrt{\frac{4 \times 16}{1 \times 4}}=\frac{4}{1}$
4.* $\quad 4.25=\left(\mathrm{W}_{0}\right)_{\mathrm{A}}+(\text { K.E. })_{\mathrm{A}}$
$4.70=\left(W_{0}\right)_{B}+(\text { K.E. })_{A}-1.5$
So $\left(W_{0}\right)_{B}-\left(W_{0}\right)_{A}=0.45+1.5$

$$
=1.95
$$

Now, $\lambda_{B}=2 \lambda_{A}$

$$
\begin{aligned}
& \frac{h}{\sqrt{2 m(K . E)_{B}}}=\frac{2 h}{\sqrt{2 m(K . E)_{A}}} \\
& \text { So (K.E) })_{A}=4(\text { K.E })_{B} \\
& 4.25-\left(W_{0}\right)_{A}=4\left[4.7-\left(W_{0}\right)_{B}\right] \\
& 4\left(W_{0}\right)_{B}-\left(W_{0}\right)_{A}=14.55 \\
& \text { So }\left(W_{0}\right)_{B}=4.2 \mathrm{eV} \\
& \text { So }\left(W_{0}\right)_{A}=2.25 \mathrm{eV} \\
& (K . E .)_{A}=2 e V \\
& (K . E)_{B}=0.5 \mathrm{eV}
\end{aligned}
$$

5. number of revolutions per second

$$
\begin{aligned}
& =\frac{\mathrm{V}}{2 \pi \mathrm{r}}=\frac{2.18 \times 10^{6}\left(\frac{Z}{n}\right)}{2 \times 3.14 \times 0.529 \times\left(\frac{\mathrm{n}^{2}}{Z}\right) \times 10^{-10}}=\frac{2.18 \times 10^{6}\left(\frac{1}{2}\right)}{2 \times 3.14 \times 0.529 \times\left(\frac{2^{2}}{1}\right) \times 10^{-10}} \\
& \text { Number of revolution in } 10^{-8} \text { second }=\frac{2.18 \times 10^{6}\left(\frac{1}{2}\right)}{2 \times 3.14 \times 0.529 \times\left(\frac{2^{2}}{1}\right) \times 10^{-10}} \times 10^{-8}=8.2 \times 10^{6} .
\end{aligned}
$$

6. The ionisation energy of He^{+}is $19.6 \times 10^{-18} \mathrm{~J}$.
$\therefore \quad$ Energy of the first orbit of $\mathrm{He}^{+}(\mathrm{Z}=2)=19.6 \times 10^{-18} \mathrm{~J}$.
$\therefore \quad$ Energy of the first orbit of $\mathrm{H}^{+}(\mathrm{Z}=1)=\frac{19.6 \times 10^{-18}}{4} \mathrm{~J}$
$\therefore \quad$ Energy of the first orbit of $\mathrm{Li}^{2+}(\mathrm{Z}=3)=\frac{19.6 \times 10^{-18}}{4} \times 9=4.41 \times 10^{-17} \mathrm{~J}$.
7.

(A) Transition $\mathrm{n} \rightarrow 6$ to $\mathrm{n} \rightarrow \infty$ For Li^{2+} sample
(B) Transition $n \rightarrow 1$ to $n \rightarrow 2$ For H -atom sample
(C) Transition $\mathrm{n} \rightarrow 1$ to $\mathrm{n} \rightarrow 3$ For He^{+}sample
(D) Transition $\mathrm{n} \rightarrow 1$ to $\mathrm{n} \rightarrow \infty$ For H -atom sample
8. $\Delta \mathrm{E}=\frac{12400}{1026}=12.09 \mathrm{eV}$.

So, $\Delta \mathrm{E}=\mathrm{E}_{3}-\mathrm{E}_{1}$.
Hence, induced radiations will be correspond to following energy transition
$\mathrm{E}_{3} \rightarrow \mathrm{E}_{1}, \mathrm{E}_{3} \rightarrow \mathrm{E}_{2}$ and $\mathrm{E}_{2} \rightarrow \mathrm{E}_{1}$.
9. $-13.6 \frac{z^{2}}{n^{2}}=4 R=4 \times 2.2 \times 10^{-18} \mathrm{~J}$.
$Z^{2}=\frac{4 \times 2.2 \times 10^{-18} \mathrm{~J}}{13.6 \times 1.6 \times 10^{-19}}=4 ; \quad Z=2$.
$r=0.529 \frac{n^{2}}{Z} \times 10^{-10} \mathrm{~m} . \quad r=0.529 \times 10^{-10} \times \frac{1}{2}=2.645 \times 10^{-11} \mathrm{~m}$.
DPP No. \# 17
1.
$\mathrm{Z}=2 \quad \mathrm{n}_{1}=2 \quad \mathrm{n}_{2}=\infty$
$\bar{v}=R(2)^{2}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=R$
2. $h v_{1}=13.6 \mathrm{eV}$
$h v_{2}=13.6 \times 2^{2} \mathrm{eV}$
$h v_{3}=13.6 \times 2^{2} \times \frac{3}{4} \mathrm{eV}$
$\Rightarrow \mathrm{h} v_{2}=\mathrm{h} v_{1}+\mathrm{h} v_{3}$
$\Rightarrow v_{2}=v_{1}+v_{3}$
3. (i) Series limit of Lyman series $\Rightarrow \mathrm{n}=\infty$ to $\mathrm{n}=1$.
(ii) Series limit of Balmer series $\Rightarrow \mathrm{n}=\infty$ to $\mathrm{n}=2$.

$$
\begin{aligned}
& E_{n=2 \text { to } n=1}=E_{n=\infty} \text { to } n=1-E_{n=\infty} \text { to } n=2 \\
& \frac{h C}{\lambda}=\frac{h C}{\lambda_{1}}-\frac{h C}{\lambda_{2}}
\end{aligned}
$$

$$
\frac{1}{\lambda}=\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}} \quad \Rightarrow \quad \lambda=\frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}
$$

4. Both the photons will not be absorbed by the electron of H -atom as the energy levels are quantised.

Sum of energies of both photons $=\frac{12400}{1240}+\frac{12400}{2000}=10+6.2=16.2 \mathrm{eV}>(I E)_{\mathrm{H}}$
5. (A) Only first four spectral lines belonging to Balmer series in hydrogen spectrum lie in visible region.
(B) If a light of frequency v falls on a metal surface having work functional $h v$, photoelectric effect will take place only if $v \geq v_{0}$, since v_{0} is the minimum frequency required for photoelectric effect.
6. $\frac{\Delta \mathrm{n}(\Delta \mathrm{n}+1)}{2}=15$
$\Rightarrow \Delta \mathrm{n}=5 \quad \Rightarrow \mathrm{n}-2=5 \Rightarrow \mathrm{n}=7$
7. $\bar{v}_{1}=R \times 3^{2}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{4}$
$\bar{v}_{2}=R \times \frac{3^{2}}{3^{2}}=R$
$\bar{v}_{2}-\bar{v}_{1}=\frac{5 R}{4}-R=\frac{R}{4}$
8.

$$
\frac{n_{1}}{n_{3}}=\frac{n_{2}}{n_{4}}=\frac{z_{1}}{z_{2}}
$$

Clearly 2nd lowest energy is $4 \rightarrow 3$ transition hence transition is Li^{2+} having same energy is $9 \rightarrow 12$
9.
(A) $6 \rightarrow 3 \quad \Delta \mathrm{n}=3$
\therefore no. of lines $=\frac{3(3+1)}{2}=6 . \quad$ All lines are in infrared region
(B) $7 \rightarrow 3 \quad \Delta \mathrm{n}=4$
\therefore no. of lines $=\frac{4(4+1)}{2}=10$.
(C) $5 \rightarrow 2 \quad \Delta \mathrm{n}=3$
no. of lines $=\frac{3(3+1)}{2}=6$.
(D) $6 \rightarrow 2$
$\Delta n=4$
no. of lines $=\frac{4(4+1)}{2}=10$.
All lines are in visible region.
10. $v=\operatorname{Rc} Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$

For $2 \rightarrow 1$ transition in H - atom sample, $v=\operatorname{Rc}(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3 R c}{4}$
$\therefore(\mathrm{H})_{2 \rightarrow 1}=\left(\mathrm{He}^{+}\right)_{4 \rightarrow 2}=\left(\mathrm{Li}^{2+}\right)_{6 \rightarrow 3}$
Thus, given photon is not emitted from $8 \rightarrow 3$ transition in He^{+}ion sample.
DPP No. \# 18

1. Total spectral lines obtained from H -atom $=6$

Total spectral lines obtained from He^{+}-ion $=6$
One line is common between them so total number of lines are 11.
2. Balmer series lines lies in visible region.
3. $\mathrm{n}_{2} \rightarrow \mathrm{n}_{1}$, max different spectral lines $=10$
$\therefore \Delta \mathrm{n}=\mathrm{n}_{2}-\mathrm{n}_{1}=4$
\therefore change in angular momentum $=(\Delta n) \frac{h}{2 \pi}=4\left(\frac{h}{2 \pi}\right)=8\left(\frac{h}{4 \pi}\right)$
$\therefore \mathrm{y}=8$
4. $\quad\left(\mathrm{Li}^{2+}\right)_{12 \rightarrow 3}=(\mathrm{H})_{4 \rightarrow 1}$
\therefore No. of lines in infrared region $=1(4 \rightarrow 3)$ paschen series
5.

\therefore Minimum number of atoms required $=4$
6. Let excited state be n .

Case-I : There is a transition to first exited state i.e. 2 nd level from $\mathrm{n}^{\text {th }}$ level.

$$
\begin{equation*}
10.20+17.00=13.6 Z^{2}\left[\frac{1}{2^{2}}-\frac{1}{n^{2}}\right] \tag{1}
\end{equation*}
$$

Case - II : There is a transition to second excited state i.e. 3rd levle from $\mathrm{n}^{\text {th }}$ level.

$$
\begin{equation*}
4.25+5.95=13.6 Z^{2}\left[\frac{1}{3^{2}}-\frac{1}{n^{2}}\right] \tag{2}
\end{equation*}
$$

on dividing (1) to (2), we have $\mathrm{n}^{\text {th }}$ level is $=6$.
So, excited state is $5^{\text {th }}$.
So, $\mathbf{n}=5$.
7. $n \lambda=2 \pi \mathrm{r} \quad \Rightarrow \quad$ so $\quad \lambda=\frac{2 \pi r}{3}=\frac{2 \pi}{3} \times(53 \mathrm{pm}) \times \frac{9}{2} \simeq 5 \AA$
8. Use formula $2 \pi r_{n}=n \lambda$

We can't apply Bohr radius formula for Be^{2+}

9. $\frac{4}{n}=\frac{6}{3} \Rightarrow n=2$ electron is present in $2^{n d}$ orbit of Be^{3+}. $\left(\mathrm{Be}^{3+} \mathrm{dsf}\right\} \mathrm{rl}$, $\mathrm{d}\{$ kesmiflhc byBRAM/2
$2 \pi r=2 \lambda \quad \Rightarrow \quad \pi r \quad \Rightarrow \quad r=0.529 \times 10^{-10} \times \frac{2^{2}}{4}=0.529 \times 10^{-10}=0.529 \AA$.

DPP No. \# 19

1. Only Spin quantum number (s) is not derived from Schrodinger wave equation.
2. number of electrons in subshells $=2(2 I+1)$
3. For $\mathrm{n}=8$ to $\mathrm{n}=6$, energy difference is minimum and $\lambda \alpha \frac{1}{\text { Energy }}$
4. $\quad S_{1}$: Photoelectric effect can be explained on the basis of particle nature of electromagnetic radiations.
$\mathrm{S}_{2}: \mathrm{n}=2, \ell=1 \therefore 2 \mathrm{p}$-orbital \therefore dumb-bell shaped.
$\mathrm{S}_{3}: \mathrm{d}_{\mathrm{xy}}$ orbital has its lobes directed at an angle of 45° from X -axis and Y -axis. So, it has zero probability of finding electrons along X -axis and Y -axis.
5. $\quad \mathrm{S}_{1}$: Angular momentum $=\mathrm{mvr}=\mathrm{n}\left(\frac{\mathrm{h}}{2 \pi}\right) \quad \therefore$ Angular momentum $\propto \mathrm{n}$.
$\mathrm{S}_{\mathbf{2}}$: An orbital can only accomodate 2 electrons with opposite spin.
S_{3} : s-orbital is non-directional in nature, rest all orbitals are directional.

DPP No. \# 20

1. $\quad n=4, m=-3 \quad \therefore$ only possible value of ℓ is 3 .
\therefore Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=\frac{2 \sqrt{3} \mathrm{~h}}{2 \pi}=\frac{\sqrt{3} \mathrm{~h}}{\pi}$.
2. $Z=26 \rightarrow[A r] 4 s^{2} 3 d^{6}$
$\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{24} \quad \Rightarrow \quad \mathrm{n}=4$
In d orbital number of unpaired electron $=4$, but element have charge so 4 s electron have to be removed hence $n+=2$.
3. $V(Z=23),[A r] 4 s^{2} 3 d^{3}$ unpaired electron $=3$;
$\mathrm{Cr}(Z=24),[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 d^{5}$ unpaired electron $=6$
$\mathrm{Mn}(Z=25),[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$ unpaired electron $=5$
4. For $\mathrm{n}=4, \ell \neq 4$, for $\ell=3, \mathrm{~m} \neq 4$
5. Total spin $=3 \Rightarrow \frac{n}{2}=3 \quad \Rightarrow n=6$
i.e. magnetic moment $=\sqrt{n(n+2)}=\sqrt{6(6+2)}=\sqrt{48}$ B.M.
6. $25^{\mathrm{Mn}}-[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$

Given $\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{15} \Rightarrow \mathrm{n}=3$
Hence to have ' 3 ' unpaired electrons Mn must be in ' +4 ' state.
7. Magnetic moment $=\sqrt{n(n+2)}$
8. Orbital angular momentum of electron
$=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi} \Rightarrow \sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=\sqrt{3} \frac{\mathrm{~h}}{\pi} \Rightarrow \ell=3$
\therefore number of orientations $=2 \ell+1=2 \times 3+1=7$
9. Configuration of the following elements

$\mathrm{Cr}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{3}$	clearly
$\mathrm{Mn}^{4+}-[\mathrm{Ar}] 3 \mathrm{~d}^{3}$	Fe^{3+} has 5 unpaired electrons and
$\mathrm{Fe}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{5}$	$\mathrm{Cr}^{3+}, \mathrm{Mn}^{4+}$ has 3 unpaired electrons

10. Maximum possible number of electrons in an atom with $(n+\ell=7)=7 \mathrm{~s}(2)+6 p(6)+5 d(10)+4 f(14)=32$
11. total spin $= \pm \mathbf{1 / 2} \times$ No. of Unpaired e^{-}

DPP No. \# 21

1. Definition
2. $\lambda=\frac{12.3}{\sqrt{v}}$.
3. ${ }_{16} S^{32}=\quad e^{-}=16$
$x^{+2}=e^{-}=16$
$(\because A=Z+N)$
4. (B) has same number of electrons i.e., 18.
$\left[\mathrm{NH}_{3} \rightarrow \mathrm{BH}_{3}\right]=10+8=18$.
5. E.C. $\rightarrow 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{1}, 4 s^{2}$
6. (a) $\mathrm{Co}^{3+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \therefore 4$ unpaired electrons $\therefore \mu=\sqrt{4(4+2)}=\sqrt{24}=4.9 \mathrm{BM}$
(b) Number of radial nodes $=\mathrm{n}-\ell-1$

Number of radial nodes in $3 p$ orbital $=3-1-1=1$
(c) Number of electrons with $(m=0)$ in $M n^{2+}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}\right)$ ion $=1 s(2)+2 s(2)+2 p(2)+3 s(2)$ $+3 p(2)+3 d(1)=11$
(d) Orbital angular momentum for the unpaired electron in V^{4+} lies in 3 d orbital. $\therefore \ell=2$
\therefore Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{h}{2 \pi}=\frac{\sqrt{6} h}{2 \pi}$
7. (a) $\quad x+e^{-} \rightarrow x^{-}$
energy released $=E . A_{1}=30.87 \mathrm{eV} /$ atom
Let no. of moles of X be a
$\therefore \quad a \times N_{A} \times 30.87=4 \times N_{A} \times 4.526+4 \times N_{A} \times 13.6+4 \times N_{A} \times 12.75 \Rightarrow a=4$ moles.
8. Number of unpiared electron are given by

Magnetic moment $=\sqrt{[n(n+2)]}$ B.M.
where n is number of unpaired electrons
or $\quad 1.73=\sqrt{[n(n+2)]} \quad$ or $\quad 1.73 \times 1.73=n^{2}+2 n \quad \therefore \quad n=1$
Now Vanadium atom must have one unpaired electron and thus its configuration is

$$
{ }_{23} V^{4+}: 1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{1}
$$

DPP No. \# 22
8. A and D are isotpes. B, C and D are isobars.
$\begin{array}{lll}\text { 9. (i) } p, s & \text { (ii) } q, r \text { (iii) } p, s \text { (iv) } q, r\end{array}$
10. Isotopic $\left({ }_{11} \mathrm{Na}^{24}\right)$ is less stable than ${ }_{11} \mathrm{Na}^{23}$ because it show radioactive decays. (Less stability of Na^{24} w.r.t. Na^{23} is also based upon $\frac{13}{11}\left(\frac{n}{\mathrm{p}}\right)$. Higher value of $\frac{\mathrm{n}}{\mathrm{p}}$, higher will be unstability so it is disintegrated to attain the stability).
$\underset{\text { Less stable }}{{ }^{11} \mathrm{Na}^{24}} \longrightarrow \underset{\substack{11 \\ \text { stable }}}{\mathrm{Na}^{23}}+\underset{{ }_{0} \mathrm{n}^{1}}{\text { neutron }}$

This neutron on decomposition to give proton and β^{-}particle ($\left.{ }_{-1} \mathrm{e}^{0}\right)$

Hence, isotopic sodium is changed into sodium by means of emission of β^{-}emission.
11.
(i) The atomic mass of an element reduces by 4 and atomic number by 2 on emission of an α-particle.
(ii) The atomic mass of an element remains unchanged and atomic number increses by 1 on emission of a β-particle.
Thus change in atomic mass on emission of $8 \alpha-$ particles will be $8 \times 4=32$
New atomic mass $=$ old atomic mass $-32=238-32=206$
Similarly change in atomic number on emission of $8 \alpha-$ particle will be : $\quad 8 \times 2=16$
i.e., New atomic number $=$ old atomic number $-16=92-16=76$

On emission of 6β-particles the atomic mass remains unchanged thus, atomic mass of the new element will be 206.
The atomic number increases by 6 unit thus new atomic nubmer will be $76+6=82$
Thus, the equation looks like: $\quad{ }_{92} X^{238} \xrightarrow[-6 \beta]{-8 \alpha}{ }_{82} Y^{206}$
12. (a) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{38}^{87} \mathrm{Sr}+{ }_{54}^{147} \mathrm{Xe}+2{ }_{0}^{1} \mathrm{n}$
(b) $\quad{ }_{34}^{84} \mathrm{Se} \longrightarrow{ }_{36}^{84} \mathrm{Kr}+2{ }_{-1}^{0} \mathrm{e}$
13. ${ }_{11}^{23} \mathrm{Na} \longrightarrow{ }_{10}^{23} \mathrm{Ne}+{ }_{+1}^{0} \mathrm{e}$; So ratio of atomic mass and atomic number $=\frac{23}{10}$.
14. ${ }_{92}^{238} U \longrightarrow{ }_{82}^{214} \mathrm{~Pb}+6\left({ }_{2}^{4} \mathrm{He}\right)+2\left({ }_{-1} \mathrm{e}^{0}\right)$

$$
\begin{aligned}
& \alpha=6, \beta=2 \\
& \text { Total }=8
\end{aligned}
$$

15. ${ }_{92}^{235} \mathrm{U} \underset{\substack{\text { (slow neutron) }}}{1} \mathrm{n} \longrightarrow{ }_{54}^{142} \mathrm{Xe}+{ }_{38}^{90} \mathrm{Sr}+4{ }_{0}^{1} \mathrm{n}$
